
Tips
& Tricks

QuickReports Images And Dots
QuickReports lets you drop a Delphi standard TImage
on a band and then draw on it, once the QRPrinter
object is initialized. The most peculiar thing I found
about using such an image was that on my dot matrix
printer it looked fine, but on my customer’s color laser
printer it caught a case of pink chicken pox, despite
explicitly setting the color of the brush and doing every-
thing I could think of, initially, to ensure I had a white
background. The solution turned out to be building a
device independent bitmap first:

mybmp := tbitmap.create;
with mybmp do begin
 height := ImageOnReport.height;
 width := ImageOnReport.width;
 monochrome := true;
end;
ImageOnReport.picture.bitmap := mybmp;
with ImageOnReport.canvas do begin
 {... do all the drawing ...}
end;

Contributed by Brandon Smith, synature@aol.com

QuickReports Generalized Report Control
I found I was replicating code on each one of my Quick-
Reports forms and I was also not real thrilled with
showing the user the form with bands and other items
that had nothing to do with the final report. When the
user clicks on a report he or she wants one of two
things: either a preview on screen or a printed report.
So I came up with a form unit to wrap around my
reports which I could drop into the Object Repository
and then tweak for each new project as needed.

This Report Preface unit, in its initial incarnation, was
designed to allow the user to specify whether a report
was to include all records or just one, to specify a date
other than today to appear on the report, to select
another font, to fiddle with the printer setup (change
printers, whatever), to preview or to print the report.
To support using this report wrapper, I set up each
QuickReports form to be called by a procedure rather
than invoking the form directly. This approach also
allows me to customize each report for that particular
call. For example, most of my report calling procedure
declarations look like this:

Procedure DoReport(DoPrint : boolean);

but I’ve one where I let the user select which columns

to include in the report, so the calling procedure is
declared as

Procedure DoChoiceReport(DoPrint : boolean;
 WhichCols : tstringlist);

Implementing each of these report control procedures
involves something along these lines:

begin
 QR_ReportForm :=
 tQR_ReportForm.create(application);
 with QR_ReportForm do begin
 { do whatever intializations are required for
 this report}
 with QuickReport1 do begin
 { Any special tweaks to the QR component
 itself, such as }
 showProgress := true;
 if DoPrint
 then Print
 else Preview;
 end;
 end;
 QR_ReportForm.release;
end;

Calling on one of these reports usually looks like this:

procedure TF_Main.SomeReport1Click(
 Sender: TObject);
begin
 f_reportPreface :=
 tf_reportPreface.create(application);
 f_reportPreface.reportName := ’Doctor’’s Visit’;
 case f_reportPreface.showModal of
 mrOK : DocVisRpt(true);
 mrYes : DocVisRpt(false);
 end;
 f_reportPreface.hide;
 f_reportPreface.free;
end;

Contributed by Brandon Smith, synature@aol.com

Delphi 3 Hints Bug
Try to compile the simple project comprising the three
files in Listing 1. You will get two hint messages saying
Hint: D:\SRC\t1u.pas(-2): Private symbol ’Unused1’
declared but never used and Hint: D:\SRC\t1u.pas(-1):
Private symbol ’Unused2’ declared but never used. Notice
that the line numbers for the messages are all wrong
(negative). It seems that the hint messages get con-
fused because of the include file.

If you now try to recompile, Delphi 3 will give an
access violation. You can now no longer compile any-
thing, you will have to restart Delphi. Usually you will
be able to do File|Save all. If you try File|Close all
you will get the same access violation and it will be
impossible to close down Delphi politely (Task
Manager’s End Task command will still work). Trying to

60 The Delphi Magazine Issue 23

work in the IDE gives lots of access violations again.
When you close down Delphi you will get a further set
of errors before it finally dies and you can restart it.

There seem to be four workarounds. Firstly, don’t
use include files. Secondly, don’t ever declare private
fields or methods that are actually not used. Thirdly,
turn off hints, or lastly, maybe compile using
DCC32.EXE instead of the IDE.

Contributed by Hallvard Vassbotn, hallvard@falcon.no

Delphi 2 & 3 Hints And Messages Bug
There are bugs in Delphi 2 and 3 that relate to the
“localness” of the $HINTS and $WARNINGS directives.
These directives do not have the same scope as other
local directives like $ALIGN. The three files in Listing 2
demonstrate the problem.

Whenever the compiler recompiles the LocBugB unit,
HINTS and WARNINGS are turned on and kept on from the
point the unit is used in other units. The same does not
happen with the ALIGN directive. So the “(sometimes)”
in the comment in the listing refers to whenever the
LocBugB unit is recompiled. This means that to make
sure HINTS and WARNINGS are turned off in a given unit
you have to include {$HINTS OFF} and {$WARNINGS OFF}
directives after the uses clause in the interface section
and after the uses clause in the implementation section.
This bug might seem innocent, but in combination with
the other one (described above) is very annoying.

There is also another related shortcoming. Often a
unit needs to turn off hints and/or warnings for a small
section of code. In the ideal case, this should be done
without affecting the initial state of the HINTS directive.
You would think that the $IFOPT directive could be used
to achieve this, but regretfully that is not so. The $IFOPT
directive only supports testing of single-letter direc-
tives and there are no single letter variants of the HINTS
and WARNINGS directives. This means that you cannot
write:

T1.DPR:
program t1;
uses t1u;
end.

T1U.PAS:
{$A+,B-,C+,D+,E-,F-,G+,H+,I+,J+,K-,L+,M-,N+,O+,P+,Q-,R-,S-,
 T-,U-, ,V+,W-,X+,Y-,Z1}
unit t1u;
interface
{$I SIMPLE.INC}
type
 TSimpleClass = class
 private
 Unused1: integer;
 Unused2: integer;
 end;
implementation
end.

SIMPLE.INC:
{1
2
3
4
5
6
7
8
9}

➤ Listing 1

LOCBUG.DPR:
program LocBug;
uses LocBugA;
begin
end.

LOCBUGA.PAS:
unit LocBugA;
interface
{$HINTS OFF} {$WARNINGS OFF} {$ALIGN OFF}
type
 TObjectA = class
 private
 UnusedA: integer; // Should not get hint, we don’t
 public
 procedure Destroy; // Should not get warning, we don’t
 end;
 TRecA = record // SizeOf(TRecA) should be 5, and it is
 A: char;
 L: longint;
 end;
implementation
uses LocBugB;
{.$HINTS OFF} // Remove dots to work around buggy behavior
{.$WARNINGS OFF}
type
 TObjectB = class
 private
 { Shouldn’t get hint, but we do in D3 (sometimes) }
 UnusedB: integer;
 public
 { Should not get warning, but we do (sometimes) }
 procedure Destroy;
 end;
 { If you remove the dot, you will get an invalid
 typecast below }
 {.$ALIGN ON}
 TRecB = record // SizeOf(TRecA) should be 5, and it is
 A: char;
 L: longint;
 end;
procedure TObjectA.Destroy; begin end;
procedure TObjectB.Destroy;
var A: TRecA;
begin
 // This is Ok because SizeOf(TRecA) = SizeOf(TRecB)
 TRecB(A).L := 123;
end;
end.

LOCBUGB.PAS:
unit LocBugB;
interface
implementation
{$HINTS ON} {$WARNINGS ON} {$ALIGN ON}
end.

➤ Listing 2

{$IFDEF _HINTS_ON_} Error: Define name clash!
{$ENDIF}
{$IFOPT HINTS ON} {$HINTS OFF}
{$DEFINE _HINTS_ON_} {$ENDIF}
...
{Hint-disabled code here}
{$IFDEF _HINTS_ON_} {$HINTS ON}
{$UNDEF _HINTS_ON_} @CODE 8ON12PT = {$ENDIF}

This is admittedly ugly looking code, but is the way we
have handled local directives back to Turbo Pascal
days. It would be handy if Borland could add {$PUSHOPT}
and {$POPOPT} directives to help in these situations.

Contributed by Hallvard Vassbotn, hallvard@falcon.no

Memo Line And Column
To get the current line and column from a memo or
RichEdit control use:

Memo1.Line := Perform(EM_LINEFROMCHAR,SelStart, 0);

Memo1.Column := SelStart-Perform(EM_LINEINDEX,Line,0);

Contributed by Bruno Sonnino, bsonnino@geocities.com

62 The Delphi Magazine Issue 23

	QuickReports Images And Dots
	QuickReports Generalized Report Control
	Delphi 3 Hints Bug
	Delphi 2 & 3 Hints And Messages Bug
	Memo Line And Column

